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Abstrrt- An exact solution is obtained for the two-dimensional temperature field under the influence 
of a fast-moving arbitrarily distributed heat source. The field is assumed to be quasi-stationary, i.e. it 
is time independent in the moving reference attached to the source. Moreover, a high speed approximation 
is employed. 

As an application, the result of a thermoelastoplastic yielding problem is given. 

NOMENCLATURE 

dimensionless a, a/a,,; 
half-width of heat source ; 
a reference width; 
specific heat; 
reference value of C ; 

Fresnel integrals 

dimensionless function of tempera- 
ture, K/K0 ; 
dimensionless function of tempera- 
ture, pC/p&; 
thermal conductivity ; 
reference value of K ; 
index 
PC&t number, Va,,pc; 
dimensionless heat flux, q/qo; 

the nth component of Q ; 
heat flux distribution; 
reference value of q ; 
temperature ; 
time ; 
velocity of movement of the solid ; 

l Presented at the Sixth U.S. National Congress of 
Applied Mechanics, Cambridge, Massachusetts, 15-19 
June, 1970. 

Cartesian coordinates relative to 
the heat source; 
Cartesian coordinates relative to 
the material; 
functions defined in equation (12); 
functions defined in equation above 
(12); 
function defined in equation (12); 
thermal diffusivity ; 
coefficient of friction; 
dimensionless temperature, 

TWoa ; 
nth component of 0 ; 
density ; 
reference value of p ; 

dimensionless coordinates, x , !a,, 
x2/a, ; 
function defined in equation (12). 

INTRODUCIION 

ARBITRARILY distributed heat source on surfaces 
of solids, which conducts heat or conducts with 
convection and radiation on other parts of the 
surface, is important in analyses of interface 
phenomena The medium forming the mating 
surface may be fluid or solid. Such interfaces are 
generally dynamic, i.e. the surfaces ate in relative 
motion [l]. In these problems, the distribution 
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of heat flux entering the solid is generally 
unknown u priori. However, by considering an 
arbitrarily distributed heat flux in the formula- 
tion of interface problems, an artifice is thereby 
provided for the eventual determination of its 
actual distribution. 

In this context, because of the complexity of 
problems involving interfaces, it is desirable to 
have exact solution. Moreover, it is advantageous 
to have the solution in as simple a form as 
possible since the success of subsequent analysis 
may well depend on the tractable forms of the 
solution. An example of such a simple form is 
found in the relationship between thermoelastic, 
surface displacement and an arbitrarily dis- 
tributed heat source on the surface of a semi- 
infinite solid [2]. In this analysis, a high-speed 

q(x1) 

FIG. 1. Schematic diagram of the semi-infinite solid. 

approximation [3] is employed to the two- 
dimensional heat equation under quasi-station- 
ary conditions i.e. time independent relative to 
a set of coordinates attached to the moving 
source 

Recent investigations on an interface pheno- 

menon requires the knowledge of this tempera- 
ture distribution. The present analysis presents 
the solution for the temperature distribution in 
a semi-infinite solid excited by a fast-moving 
arbitrarily distributed heat source. The source 
is moving on the surface of the semi-infinite 
solid. As an example this temperature dis- 
tribution is used in the analysis of a thermo- 
elastoplastic yielding problem, the results of 
which are presented. 

THE PROBLEM 

Model 
Figure 1 shows a semi-infinite solid moving 

with a constant speed, I’, relative to a heat source 
which is arbitrarily distributed, 4(x,). The co- 
ordinates (x’,, x,) are fixed with respect to the 
material while (x,, x,) are fixed with respect to 
4(x, ) The width of the heat source is 2~. 

Mathemuticul statement 
The heat equation in two-dimension and for 

constant thermal properties is 

?TY?x’,~ + a2T/dx; = K-'DT/DL (1) 

where T is the temperature rise over a constant 
reference, K is the thermal diffusivity, t is the 
time and D( )‘Dt is the material derivative. Since 
x, = xi -t I/t and aT2t = DT/Dt - @Tdx,). 
(ax, /at), then for quasi-stationary state, i.e 
dT/& = 0, DT/Dt = VdTidx,. For high speed 
I/ (i e. relative to K/U), a2iyaX: in equation (11 
may be neglected [3]. Under the above restric- 
tion and since 8’ T/8x$ = d2 T/ax:, equation (11 
and the appropriate boundary conditions may 
be put in the 

a2%/arf2 = RaeJay, 

-aelarj = Q(5) (0 < 5 < 2A, r/ = 0) 
o 

(-co<c;<o, 2A < 

form 

(21 

5 -=C m, r] = O), 
(3) 

8-O [g2 + q2P + oo], (4) 

where the following dimensionless quantities have been introduced : 

8 = TKlqoaO, R = I/Uo/K, A E ala,, 5 E x,/a,, fl = x,Ja,, and Q = q/go. 

K is the thermal conductivity, a, and go are reference quantities. 
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Analysis 
The fundamental solution of the above system, i.e. the Green’s function, is the classical LaPlace 

solution [4]. The system itself, therefore, possesses an integral representation of the general solution 

0 

6~ = 

1 

(5 < 0) 

(nN-* [ Q(Y) (5 - (‘j-i exp [ - Rq*/4(5 - e’j] d5’ (0 < < < 2A) (51 

bR)-* 7 Q(Y) ([ - 5’)-* exp [ - Rq2/4(5 - (31 dl’ (5 > 2AI 

Since Q(T) is arbitrary, I”t may be represented by a Fourier series 

Q(t) = f Q. sin2 (0 < g < 2A). 
n=l 

Letting 0, be defined in such a way that 

8 = f e,, (7) 
II=1 

then 13, may be obtained from equation (5) for the nth term of the series representation (6). It should 
be noted that Q(5, is capable of representation by a cosine series as an alternative. 

Equation (5) for a general term of equation (6) is 

(r < 0) 

(0 < r < 2A) (8) 

(5 > 24, 

where 

I, = i sin$(r - t’)-*exp[-Rq*/4(5 - <‘)]d{’ 
0 

- k?-* exp [-R’qM(< - c’)] d<‘. 

Now I r may be written as 

I, = ksin$[I,, + II21 + ~cos~[~,, - I,,], 

where 

(9) 
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I 1 I may be expressed as 

I,, = 2rexp [-&(x2 + $)]dx, 

0 

(10) 

where 

Differentiating equation (10) twice with respect to a r, the following linear second order, ordinary 
differential equation may be obtained : 

This equation possesses the solution under the restriction that I 1 1 remains finite and it takes on 
the limiting value at a, = 0, 

Similarly, 

where 

Note that 

where 

'12 = 
Jn 
g-exp(-2cf2a23 erf(c,2J5) + erf %(< -a ) 

12 i [JE ‘It 
crz = (n?r/4A)*(l + i) 

uz = (AR/4n7# (1 - i) q. 

c(z) + is(z) = Ferf[$(l - i)z] 

c( ) = p cos (7rt2/2) dt 
0 

and 

s( ) = 

are Fresnel integrals. Further, the functions 

c(-z) = -c(z) 

s(-z) = -s(z) 

[ sin (xt2/2) dt 

c(z) and s(z) satisfy the following identities: 

c(iz) = it(z) c(Z) = E@ 

s(iz) = - is(z) s(Z) = $). 



Bquation (9) may now be put into the form 

f r = r$ + r: + r:, U8 



Tk ~jgh-~ ~pp~uxirnatjo~ w~jc~ is correct 
asymptotically with respect to R3 has been 
shown to be accumte for R D 5 within the 
‘boundary layer’ in the vicinity of the heat 
source. 

ErnMFLE 

Thert,la-n2echanical mdel 

Surface roughness plays a 
many surface or interface 

dominant role in 
phenomena, For 

example, the pIa& cobras d asperities on 
surfaces in sri&lg eontac~ which are separated 
by a fluid, causes the nature of the siiding process 
to change from the state wherein the asperities 
are deformed only elastically. The outward 
rna~~f~t~t~on may be a reIatively high frictional 
resistauce 53 tI-re elastic case and a decreasing 
frictional resistance subsequent to such a WI- 
lapse. Wence of interest is the influence of the 
therrno-processes upon the collapse of these 
asperities. 

The thermo-m~~~~j~ model is th& of an 
ideal efasto~Iastic ~rni*in~ni~ s&l ~4% fern- 
perdure dependent yield stress The material is 
taken to be isotropic and in plane strain. All 
other modulii are considered temperature inde- 
pendent. Although the speed is high based on 
therrnaE ~~side~t~~~~ i.e. the P&c& number 
R z Va,iic % 1, it is still ne~~bIe when com- 
pared with the speeds of prop&g&tion of 
mechanical disturbances, for exampleY the speed 

me&a&l inerti;t can still be neglected. 
In this model, the coefficient of friction, 1, is 

assumed to be load and temperature indepen- 
dent. The body is under the mechanical loading 
ofIr(x!fand~~~,lintherregionO G x, B 2nIt 
is assumed that the heaz f&x into the body is 
given by [5] the expression VJ&C,~. An analysis 
of the model described above will establish the 
incipient plastic yielding on the surface It 
should be noted that it is the physic&l spreading 
of the material under ~ieId~~g which changes 
certain interface ~h~omeno~ This in turn 
c~usez a decrease in the frictional coefficient. 
More elaborate models which take these and 
other contact phenomena into consideration 
are available but w&d be outside of the pro- 
vince of this paper. In fact for *he exampIe 
d&&s of the th~~m~-~Ias~o~l~ti~~ analysis 
will be omitted arrd only the results will be 
shown [6]. 

Inasmuch as the appropriate temperature 
Geld is to be used in the uncouple thermo- 
~l~~tic~t~ theoq with tem~rat~~ dependent 
yield stress, it stands to reason the relevant 
temperature would be such that the thermal 
properties are also temperature dependent. For 
the case where tberrnal conductivity K = K&I@) 
and the prod%@ of density and Safe heat 
$C 5 ~~~~~~, wI%ere the subscript &cm to a 
ref&me state, it has been shown [7] that such 
temperature dependence, however strong may 
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be ignored so long as (fg)-f V 1. With the 
above provisal, solutions of equation (2) under 
conditions (3) and (4) may be used for the 
intended purpose. In other words, the use of the 
heat equation with thermal properties which are 
temperature independent in a thermo- elasto- 
plastic analysis where the yield stress is tempera- 
ture dependent may not be inconsistent. 

Temperature field 
A typical contour map of the temperature field 

is given in Fig. 2. This is for the case R = 444 
and q(5) is parabolically distributed in 0 G c 6 
2A, A = 1. 

7 0 

0, 
FIG. 2. Contour map of a typical temperature field in 

dimensionless measure 0(<, q). 

Threshold of themo-elastoplastic yielding 
A thermo-elastoplastic analysis has been made 

in which the yield stress is a function of tempera- 
ture. For this example the data for 1060 steel 
[8] was used. Young’s modulus is 30 x lo6 psi 
and Poisson’s ratio is 0.3. Figure 3 shows the 
total load vs. velocity curve which is the demarca- 
tion for incipient thermo-elastoplastic yielding. 
This is for the case where the coefficient of 
friction is 0.14. The dotted line is for incipient 
yielding based on isothermal theory. 

Note that Fig. 3 has a break near the ordinate 
value of 8. This is done to give some detail of the 
load-velocity curve while providing a measure 
relative to the case of isothermal yielding, i.e. 
elastoplatic. It is clear, within magnitudes of 
loads and velocities encountered in practice, 
that the thermal effects reported here, if neg- 

lected, could lead to drastically different con- 
clusions. 

1060 steel 
x=0.14 

0 3 6 9 

Velocity. V, ft/s 

FIG. 3. Total load-velocity curve as demarcation for incipient 
thermoelastic plastic yielding. Coefikient of friction = 0.14. 

Dotted line for incipient elastoplastic yielding. 
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DISTRIBUTION DE TEMPERATURE DANS UN SOLIDE SEMI-INFINI PAR UNE SOURCE 
DE CHALEUR ARBITRAIRE A DEPLACEMENT RAPIDE 

Rbum&Une solution exacte est obtenue pour le champ de temperature bidimensionnel sous l’influence 
d’une source thermique a d&placement rapide, arbitrairement distribuee. Le champ est suppose etre 
quasi-stationnaire, c’est-a-dire independant du temps dam un rtferentiel mobile lie a la source. De plus, 
on utilise l’hypothese d’une grande vitesse. En application, on considbre le probldme du fluage thermo- 

Clastoplastique. 

TEMPERATURVERTEILUNG IN EINEM HALBUNENDLICHEN FESTKGRPER UNTER DEM 
EINFLUSS EINER SICH SCHNELL BEWEGENDEN BELIEBIGEN WARMEQUELLE 

Zuaammenfassung-Es wird eine exakte Losung fur das zweidimensionale Temperaturfeld unter dem 
Einfluss einer sich schnell bewegenden, willktlrlich verteilten Warmequelle gefunden. Es wird angenommen, 
dass das Feld quasistationlr ist, d.h. es ist zeitunabhangig in einem mit der Quelle fest verbtmdenen Bezugs- 
system. Darilber hinaus wird eine rasch auswertbare Naherung verwendet. 

Als Anwendungsbeispiel wird das Ergebnis einer thermoelastischen Geftigeveranderung mitgeteilt. 

PACIIPEAEJIEHME TEMIIEPATYPbl 3 IlOJlYBECKOHE=IHOM 
TBEPjJOM TEJIE IIOjJ BJIMHHHEM EbICTPOABHXYIlJEPOClI 

HPOB3BOJIbHOI’O MCTO=IHBKA TEIlJIA 

AHEoTnL(aJI-Hony9eHo TOYHOe peIUeHkIe RJIH RByMepHOrO TeMItepaTypHOrO IIOJIfI IIpkl 

Hanugau npoM3BonbHo pacnpe~eneHHoro~nm+iy~eroc~ wzTowaKaTenna.IIpe~nonaraeTcx, 

wo none Ksa3mTaqEioHapHoe, T.e.B CElCTeMe OTCqeTa, HBIl?Ky~efiCFt BMeCTe C HCTOqHklKOM, 

OHOHe 3aBIlCIlTOTBpeMeHkI.Aanee WXIOJIb3yeTCFl npn6nnHteune~jIR 6onbmnx CKOpOCTet. 

B KaqecTBe npnnomeHm ~PHBO~FITCH pe3ynbTaTbI p[m aagam 0 TepMoynpyronnacTkf- 

YeCKOfi TeKy=IeCTM. 


