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TEMPERATURE DISTRIBUTION IN A SEMI-INFINITE
SOLID UNDER A FAST-MOVING ARBITRARY HEAT
SOURCE*

FREDERICK F. LING and CHARLES C. YANG
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(Received 6 January 1970 and in revised form 23 March 1970)

Abstract— An exact solution is obtained for the two-dimensional temperature field under the influence
of a fast-moving arbitrarily distributed heat source. The field is assumed to be quasi-stationary, i.e. it
is time independent in the moving reference attached to the source. Moreover, a high speed approximation
is employed.
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As an application, the result of a thermoelastoplastic yielding problem is given.

NOMENCLATURE
dimensionless a, aja,;
half-width of heat source;
a reference width;
specific heat;
reference value of C;

. © fcos(nt2/2)] ,. .
Fresnel integrals g {sin(nt2/2)}dt’

dimensionless function of tempera-
ture, K/Ky

dimensionless function of tempera-
ture, pC/poCo;

thermal conductivity;

reference value of K;

index

Péclét number, Vag/x;
dimensionless heat flux, g/go;

the nth component of Q;

heat flux distribution;

reference value of g;

temperature;

time;

velocity of movement of the solid;
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X1, X,  Cartesian coordinates relative to
the heat source;

X{,Xx,,  Cartesian coordinates relative to
the material ;

Z, Zg, functions defined in equation (12);

23,292,  functions defined in equation above
(12);

Y, function defined in equation (12);

K, thermal diffusivity;

A coefficient of friction;

0, dimensionless temperature,
TK/qoa,;

O nth component of 0;

p. density ;

Po- reference value of p;

&, dimensionless coordinates, x,/aq,
X,/aq;

v, function defined in equation (12).

INTRODUCTION

ARBITRARILY disttibuted heat source on surfaces
of solids, which conducts heat or conducts with
convection and radiation on other parts of the
surface, is important in analyses of interface
phenomena. The medium forming the mating
surface may be fluid or solid. Such interfaces are
generally dynamic, i.e. the surfaces are in relative
motion [1]. In these problems, the distribution
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of heat flux entering the solid is generally
unknown «a priori. However, by considering an
arbitrarily distributed heat flux in the formula-
tion of interface problems, an artifice is thereby
provided for the eventual determination of its
actual distribution.

In this context, because of the complexity of
problems involving interfaces, it is desirable to
have exact solution. Moreover, it is advantageous
to have the solution in as simple a form as
possible since the success of subsequent analysis
may well depend on the tractable forms of the
solution. An example of such a simple form is
found in the relationship between thermoelastic,
surface displacement and an arbitrarily dis-
tributed heat source on the surface of a semi-
infinite solid [2]. In this analysis, a high-speed
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Fi1G. 1. Schematic diagram of the semi-infinite solid.

approximation [3] is employed to the two-
dimensional heat equation under quasi-station-
ary conditions, i.e. time independent relative to
a set of coordnates attached to the moving
source.

Recent investigations on an interface pheno-
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menon requires the knowledge of this tempera-
ture distribution. The present analysis presents
the solution for the temperature distribution in
a semi-infinite solid excited by a fast-moving
arbitrarily distributed heat source The source
is moving on the surface of the semi-infinite
solid As an example this temperature dis-
tribution is used in the analysis of a thermo-
elastoplastic yielding problem, the results of
which are presented.

THE PROBLEM

Model

Figure 1 shows a semi-infinite solid moving
with a constant speed, V, relative to a heat source
which is arbitrarily distributed, g(x,). The co-
ordinates (x|, x,) are fixed with respect to the
material while (x,, x,) are fixed with respect to
q(x,) The width of the heat source is 2a.

Mathematical statement
The heat equation in two-dimension and for
constant thermal properties is

82T idx\2 + 6*T/ox: = k™ 'DT/Dt. (1)

where T'is the temperature rise over a constant
reference, x is the thermal diffusivity, ¢ is the
time and D( )/Dr is the material derivative. Since
X, = x, + Vtand 0T /0t = DT/Dt — (0T i0x,)-
(0x,/0t), then for quasi-stationary state, ie.
0T /0t = 0, DT/Dt = VoT/0x,. For high speed
V (ie relative to k/a), 62T/0x? in equation (1)
may be neglected [3]. Under the above restric-
tion and since 0% T/0x5 = 0*T/0x3, equation (1)
and the appropriate boundary conditions may
be put in the form

where the following dimensionless quantities have been introduced :

0%0/on* = Re0/0E, 2)
n = 0)
24 < & < o0, n=0), (3)
[(&% + )t = 0], (4
A = ajay, & = x,/a,, N = X3/do, and Q@ = g/q,

8 = TK/qoa0, R = Vagy/xk,

K is the thermal conductivity, a, and g, are reference quantities.
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Analysis
The fundamental solution of the above system, i.e. the Green’s function, is the classical LaPlace
solution [4]. The system itself, therefore, possesses an integral representation of the general solution

0 (€ <0)
4
0= (nR)“*(f)Q(é/) (& - & texp[—Ry*/4E — &) dE 0<¢&<24 (%)
24
(R [ 0N (& — &) P exp[— Ry /A€ — &)]dE (£ 24).
0
Since Q(¢) is arbitrary, it may be represented by a Fourier series
20 = Z 0, sm"—ﬁ 0 <¢<24) (6)
Letting 8, be defined in such a way that
-3, (7
n=1

then 6, may be obtained from equation (5) for the nth term of the series representation (6). It should
be noted that Q(£) is capable of representation by a cosine series as an alternative.
Equation (5) for a general term of equation (6) is

0 (£ <0)
6, =< 0 (rR)"* 1, 0< (<24 8)
QR (> 24),
where
Iy = [ in5e € ~ ) Yexp [ RiAC — )
I, = 5 sin 2% (¢ — &)"* exp [- R¥mA(E — )] 2.

Now I, may be written as

1
I, = 5sin [111+112]+ C082A€

2 [ - 112]’ (9)

where

" R
5 -

$

R
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2
I,, =2 exp Ii—cf, (xz + %)]dx,

¢y = (nm/44) (1 — i)
a, = (AR/4nm) (1 + i)n.

I,, may be expressed as

where

(10)

Differentiating equation (10) twice with respect to a,, the following linear second order, ordinary

differential equation may be obtained:

d?I,, 1 |: <a2
—dch I, =4c2, —exp |-, [+ + &) |
i 1141 11\/5 p N\

This equation possesses the solution under the restriction that I,, remains finite and it takes on

the limiting value at a, = 0,

I, = %GXP("ZCL‘H) {erf(c”\/é) + erf Ci/Lé (€ —ayl}.
Similarly,
I, = 5‘—/6—:%exp(—2c%2a2) {erf(clz\/é) + erf f/%(f - az)T },
where
ciy = (nm/4Ay (1 + i)
a, = (AR/4nm)* (1 — D)7
Note that
c(2) + is(z) = 1—+—ierf [ﬂ 1-19 z]
2 2
where
0
o )= | cos(nt?/2)dt
o]
and

s() = (j) sin (mt?/2) dt
0

are Fresnel integrals. Further, the functions ¢(z) and s(z) satisfy the following identities:

{ c(—2y= —c(z)  c(iz) = ic(z) o(3) = cz)
s(—z) = —s(2) sliz) = —is(z)  s(2) = (2).
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Equation (9) may now be put into the form

L=+ + 8B (an
where
= \/ (%)e’” Y [sin ¥ cfz,) = cos ¥ s(zo)]
, 1 N v
I = sl €7 {sin ¥ {ofZ) + olz}] — cos ¥ {5(8) + s(2]}
H= —;- \/ (%)e’“” {cos ¥ [e(2) —~ c2)] + sin ¥ {5(3) — s(2)]}.
Or

l, = J (i:w) e”¥ {sin ¥[e(z,) + Rec(z) + Im s(z)] — cos P[5(z) + Res(z) -~ Im (2)]}.

where
waﬁ’iﬁ\i v mé v
=\a /)" =74
&)
23:,- "“‘:‘i‘
= (i e (@) ]+ ()
T\A¢ ann) "1 Nanm) M
In the same munner,

Iy = J (—é)e“" {sin ¥[clz,) + Rec(z) + Ims(z) = c(z,) ~ Re ¢(2z;) — Im 2,)]

— cos Pls(zo) + Res(z} — Im cfz) =~ 8(Zga} — Re3(z,) + Imofz,)]},

1t
b
7 ¥ ARV (AR
% =[A(e - Mi] {[f =24 ””(M) ”]“’” ’(W) "}‘

where
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The high-speed approximation, which i correct
asymptotically with respect to R, has been
shown to be accurate for R > 5 within the
‘boundary layer’ in the vicinity of the heat
source.

EXAMPLE

Thermo-mechanical model

Surface roughness plays a dominant role in
many surface or interface phenomena. For
example, the plastic collapse of asperities on
surfaces in sliding contact, which are separated
by a fluid, causes the nature of the sliding process
to change from the state wherein the asperities
are deformed only elastically The outward
manifestation may be a relatively high frictional
resistance in the elastic case and a decreasing
frictional resistance subsequent to such a col-
lapse. Hence of interest is the influence of the
thermao-processes upon the collapse of these
aspetities.

The thermo-mechanical model is that of an
ideal elastoplastic semi-infinite solid with tem-
perature dependent vield stress. The material is
taken to be isotropic and in plane strain. All
other modulii are considered temperature inde-
pendent. Although the speed is high based on
thermal consideration, ie the Péclét number
R = Vag/xk > |, it is still negligible when com-
pared with the speeds of propagation of
mechanical disturbances, for example, the speed

0, (%Y ¢ {sin Pclzo) + Reclz) + Im s(2)]
- cos P[s(zo) + Re s(z) — Im e(2)]}

) ot {sin Ple(z) + Reclz} + Im 5(2) — elzo)

— Re ¢(zy) = Im s(z,)] = cos P[s(zy) + Re s(z) — Im ¢(z)
~ 8(zo5) — Re s{z3) + Ime(z,)]},
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(£ <0

0<¢<g24)
L (12)

(&> 24)

of propogation of the shear waves Thus the
mechanical inertia can still be neglected.

In this model, the coefficient of friction, 4, is
assumed to be load and temperature indepen-
dent. The body is under the mechanical foading
of p{x,Jand Ap(x,}intheregion0 € x, < Za It
is assumed that the heat flux mto the body =8
given by [5] the expression VAp(x,). An analysis
of the model described above will establish the
incipient plastic yielding on the surface It
should be noted that it is the physical spreading
of the material under yielding which changes
certain interface phenomenon. This in turn
causes a decrease in the frictional coefficient.
More elaborate models which take these and
other contact phenomena into consideration
are available but would be outside of the pro-
vince of this paper. In fact for the example
details of the thermo-clastoplasticity analysis
will be omitted and only the results will be
shown [6].

Inasmuch as the appropriate temperature
field is to be used in the uncoupled thermo-
plasticity theory with temperature dependent
yield stress, it stands to reason the relevant
temperature would be such that the thermal
properties are also temperature dependent. For
the case where thermal conductivity K = K, fi6)
and the product of density and specific heat
pC = pCoglf, where the subscript refers to 2
reference state, it has been shown [7] that such
temperature dependence, however gtrong, may
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be ignored so long as (fg)™* ~ 1. With the
above provisal, solutions of equation (2) under
conditions (3) and (4) may be used for the
intended purpose. In other words, the use of the
heat equation with thermal properties which are
temperature independent in a thermo- elasto-
plastic analysis where the yield stress is tempera-
ture dependent may not be inconsistent.

Temperature field

A typical contour map of the temperature field
is given in Fig. 2. This is for the case R = 444
and g(&) is parabolically distributed in 0 < £ £
24,4 = 1.
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FiG. 2. Contour map of a typical temperature field in
dimensionless measure (¢, n).

Threshold of thermo-elastoplastic yielding

A thermo-elastoplastic analysis has been made
in which the yield stress is a function of tempera-
ture. For this example the data for 1060 steel
[8] was used. Young’s modulus is 30 x 10° psi
and Poisson’s ratio is 0-3. Figure 3 shows the
total load vs. velocity curve which is the demarca-
tion for incipient thermo-elastoplastic yielding,
This is for the case where the coefficient of
friction is 0-14. The dotted line is for incipient
yielding based on isothermal theory.

Note that Fig 3 has a break near the ordinate
value of 8. This is done to give some detail of the
load—velocity curve while providing a measure
relative to the case of isothermal yielding, ie.
elastoplatic. It is clear, within magnitudes of
loads and velocities encountered in practice,
that the thermal effects reported here, if neg-
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lected, could lead to drastically different con-
clusions.
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Fi1G. 3. Total load-velocity curve as demarcation for incipient
thermoelastic plastic yielding. Coefficient of friction = 0-14,
Dotted line for incipient elastoplastic yielding,
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DISTRIBUTION DE TEMPERATURE DANS UN SOLIDE SEMI-INFINI PAR UNE SOURCE
DE CHALEUR ARBITRAIRE A DEPLACEMENT RAPIDE

Résumé—Une solution exacte est obtenue pour le champ de température bidimensionnel sous 'influence

d’une source thermique a déplacement rapide, arbitrairement distribuée. Le champ est supposé étre

quasi-stationnaire, c’est-a-dire indépendant du temps dans un référentiel mobile 1ié A la source. De plus,

on utilise ’hypothése d’une grande vitesse. En application, on considére le probléme du fluage thermo-
¢lastoplastique.

TEMPERATURVERTEILUNG IN EINEM HALBUNENDLICHEN FESTKOI_{‘PER UNTER DEM
EINFLUSS EINER SICH SCHNELL BEWEGENDEN BELIEBIGEN WARMEQUELLE

Zusammenfassung—FEs wird eine exakte Losung fiir das zweidimensionale Temperaturfeld unter dem
Einfluss einer sich schnell bewegenden, willkiirlich verteilten Warmequelle gefunden. Es wird angenommen,
dass das Feld quasistationar ist, d.h. es ist zeitunabhéngig in einem mit der Quelle fest verbundenen Bezugs-
system. Dartiber hinaus wird eine rasch auswertbare Niherung verwendet.

Als Anwendungsbeispiel wird das Ergebnis einer thermoelastischen Gefiigeverdnderung mitgeteilt.

PACIIPEJEJEHHUE TEMIIEPATYPbl B IIOJIYBECKOHEUYHOM
TBEPJOM TEJIE INOL BJIUAHUEM BLICTPOOBMKYHIEIOCA
IMTPON3BOJBHOI'O NICTOYHNKA TEIIJIA

Annoranua—IJoayyeHo TOYHOe pellleHHe [JA JABYMEPHOTO TEMNEPATYPHOro IOJA HpHU
HAJXWYUHU DIPOM3BOILHO pacnpefelleHHOrO ABWKYyHleroca ucrounuka renna. Ilpegnonaraerca,
4TO HOJi€é KBA3MCTALMOHAPHOE, T.6.B CHCTEME OTCYETA, ABUMKYILICHCA BMECTe ¢ UCTOYHUKOM,
OHO He 3aBHCUT OT BpeMenu. [lamee ucnonbayerca npubiausxenne ajd GoablIMX CKopocTelt.
B kavecTBe NpmIIOeHUA NPHBOJATCA Pe3YALTATH AJIA 33a/a4i O TePMOYNPYTONJIACTH-
4eCKOW TEeKy4eCTH.



